REACTION OF 4-AMINO-4,5-DIHYDRO-1*H***-1,2,4-TRIAZOL-5-ONES WITH 2,5-DIMETHOXYTETRAHYDROFURAN**

Aykut A. IKIZLER and Haydar YUKSEK

Department of Chemistry, Karadeniz Technical University, 61080 Trabzon, Turkey

> Received April 9, 1993 Accepted May 25, 1993

A number of studies involving some reactions of 4-amino-4,5-dihydro-1*H*-1,2,4-triazol-5-ones have been made in recent years^{1 – 6}. On the other hand, the reactions of some *N*-aminoheteroaryls with 1,4-diketones or 1,4-dialdehydes to give *N*,*N'*-linked biheteroaryls have also been reported^{7 – 10}. In the present study, a series of 3-alkyl-4amino-4,5-dihydro-1*H*-1,2,4-triazol-5-ones *I* were condensed in good yields with the succinaldehyde equivalent, 2,5-dimethoxytetrahydrofuran to give *N*,*N'*-bis(3-alkyl-4,5dihydro-1*H*-1,2,4-triazol-5-on-4-yl)-1,4-butanediimines *II* or 1-(3-alkyl-4,5-dihydro-1*H*-1,2,4-triazol-5-on-4-yl)pyrroles *III* in nitrobenzene or acetic acid medium, respectively. To obtain more information on type *II* compounds, 3-methyl-4-ethylidenamino-4,5-dihydro-1*H*-1,2, 4-triazol-5-one (*IV*) was synthesized.

EXPERIMENTAL

Melting points were determined on a Büchi oil heated melting point apparatus and are uncorrected. Experimental data for compounds *II*, *III* and *IV* are given in Table I. Infrared spectra (given in cm⁻¹)

In formulae
$$I - III$$
:
a, R = CH₃; b, R = CH₃CH₂; c, R = C₆H₅CH₂;
d, R = p-MeC₆H₄CH₂; e, R = p-ClC₆H₄CH₂; f, R = p-NO₂C₆H₄CH₂;
g, R = C₆H₅; h, R = p-MeC₆H₄

Collect. Czech. Chem. Commun. (Vol. 59) (1994)

732

TABLE I

Experimental data for compounds II, III and IV

Compound	M.p., °C	Formula	Calculated/Found			
Compound	Yield, %	M.w.	% C	% H	% N	
IIa	225 ^a	$C_{10}H_{14}N_8O_2$	43.16	5.07	40.27	
	63	278.3	42.94	5.13	40.00	
IIb	221 ^{<i>a</i>}	$C_{12}H_{18}N_8O_2$	47.05	5.92	36.58	
	69	306.3	46.79	5.95	36.74	
IIc	228^{a}	$C_{22}H_{22}N_8O_2$	61.38	5.15	26.03	
	78	430.5	61.25	5.12	25.94	
IId	247 ^{<i>a</i>}	$C_{24}H_{26}N_8O_2$	62.87	5.71	24.44	
	65	458.5	62.60	5.77	24.14	
IIe	250^{a}	$C_{22}H_{20}Cl_2N_8O_2$	52.91	4.04	22.44	
	63	499.4	52.86	4.22	22.29	
Пf	265 ^{<i>a</i>}	C22H20N10O6	50.77	3.87	26.91	
	79	520.5	50.66	3.90	26.86	
IIg	230^{b}	C20H18N8O2	59.69	4.51	27.84	
U	71	402.4	59.40	4.78	27.60	
IIh	307 ^c	C22H22N8O2	61.38	5.15	26.03	
	83	430.5	61.10	5.09	25.73	
IIIa	135^{b}	C7H8N4O	51.21	4.91	34.13	
	76	164.2	51.34	4.87	34.41	
IIIc	164^{d}	C13H12N4O	64.98	5.03	23.32	
	88	290.3	64.76	5.10	23.37	
IIId	190^{d}	C14H14N4O	66.12	5.55	22.04	
mu	89	254.3	66.00	5.50	21.85	
IIIe	191 ^e	C12H11CIN4O	56 84	4 03	20.39	
me	86	274.7	57.13	4.08	20.59	
IIIa	204^b	Cultur	63 70	1 16	24 77	
mg	204 91	226.2	63.42	4.40	24.50	
II.	1268	CUNO	40.95	5.75	20.08	
IV	120	C5H8IN4O	42.85	5.75 5.85	39.98 30.96	
	41	140.1	42.00	5.65	37.70	

Crystallized from: ^a Ethanol; ^b benzene-petroleum ether (1 : 1); ^c DMSO-H₂O (1 : 3); ^d water; ^e benzene.

New Compounds

TABLE II

IR Data for compounds II, III and IV

Compound	$\nu_{\rm NH}$	$\nu_{C=0}$	$\nu_{C=N}$	Substituted benzenoid ring
Па	3 175	1 690	1 590	_
IIb	3 180	1 695	1 580	_
IIc	3 170	1 700	1 582	730, 695
IId	3 185	1 685	1 590	810
IIe	3 175	1 695	1 590	825
IIf	3 175	1 692	1 585	808
IIg	3 190	1 690	1 575	760, 690
IIh	3 170	1 695	1 575	820
IIIa	3 200	1 710	1 595	_
IIIc	3 195	1 705	1 590	730, 690
IIId	3 200	1 695	1 588	800
IIIe	3 195	1 695	1 590	815
IIIg	3 190	1 705	1 580	765, 690
IV	3 190	1 690	1 595	-

TABLE III ¹H NMR Data for compounds *II*

Compound	2 CH ₃	CH ₂ CH ₂	2 CH ₂	2 CH	2 NH	Aromatic H
IIa	2.22 s	2.40 - 3.00 m	_	9.20 s	12.00 s	-
IIb	1.16 t	а	а	9.15 s	11.95 s	-
Ис	-	2.35 – 2.85 m	3.85 s	9.05 s	11.90 s	7.20 s, 10 H
IId	2.20 s	2.40 - 2.90 m	3.85 s	9.00 s	11.90 s	7.10 s, 8 H
IIe	-	2.40 - 2.85 m	3.90 s	9.15 s	12.05 s	7.30 s, 8 H
IIf	-	2.35 – 2.80 m	4.05 s	9.16 s	12.18 s	7.60 d, 4 H
						8.25 d, 4 H
IIg	_	2.40 – 3.05 m	_	9.16 s	12.20 s	7.40 – 8.20 m, 10 H
IIh	3.10 s	2.30 - 2.80 m	-	9.05 s	12.10 s	7.32 d, 4 H
						7.76 d, 4 H

 a 2.20 – 2.90 m, 8 H (4 $\rm CH_2).$

were run as potassium bromide pellets using a Perkin–Elmer 337 spectrophotometer (Table II). ¹H NMR and ¹³C NMR spectra (given in δ , ppm) were recorded on a Varian A60 spectrometer or a Bruker AC-200 FT instrument in (CD₃)₂SO. Combustion analyses were performed on a Carlo Erba 1106 elemental analyzer. ¹H NMR Data are given in Tables III and IV. Mass spectrum of compound *IIa* was run on a Kratos MS-50 instrument. The starting compounds *I* were synthesized by methods described earlier^{2,11}.

N,*N*'-Bis(3-alkyl-4,5-dihydro-1*H*-1,2,4-triazol-5-on-4-yl)-1,4-butanediimines *II*. General Procedure

3-Alkyl-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-one (I, 0.01 mol) was treated with a solution of 2,5dimethoxytetrahydrofuran (1.3 ml, 0.01 mol) in nitrobenzene (20 ml), and the mixture was refluxed for 2 h. After cooling, the precipitate formed was recrystallized from an appropriate solvent to give compound II.

1-(3-Alkyl-4,5-dihydro-1*H*-1,2,4-triazol-5-on-4-yl)pyrroles *III*. General Procedure

3-Alkyl-4-amino-4,5-dihydro-1*H*-1,2,4-triazol-5-one (I, 0.01 mol) was dissolved in acetic acid (25 ml) and treated with 2,5-dimethoxytetrahydrofuran (1.3 ml, 0.01 mol). The mixture was refluxed for 1.5 h and then evaporated at 50 – 55 °C under reduced pressure. Several recrystallizations of the residue from an appropriate solvent afforded pure compound *III*.

Synthesis of 3-Methyl-4-ethylideneamino-4,5-dihydro-1H-1,2,4-triazol-5-one (IV)

3-Methyl-4-amino-4,5-dihydro-1*H*-1,2,4-triazol-5-one (*Ia*) (1.14 g, 0.01 mol) was dissolved in ethanol (30 ml), and acetaldehyde (0.62 ml, 0.11 mol) was added to the solution. The mixture was refluxed for 1 h and then evaporated at 25 - 30 °C under reduced pressure. The viscous residue

Compound	CH ₃	CH ₃	CH ₂	СН	NH	Aromatic H
IIIa	2.02 s	_	_	_	12.05 s	6.26 t, 2 H; 7.00 t, 2 H
IIIc	-	_	3.95 s	_	12.15 s	6.20 t, 2 H; 6.90 t, 2 H
						7.00 – 7.40 m, 5 H
IIId	2.34 s	_	3.85 s	-	12.25 s	6.30 t, 2 H; 6.95 t, 2 H
						7.20 q, 4 H
IIIe	_	_	3.90 s	-	12.20 s	6.20 t, 2 H; 6.90 t, 2 H
						7.20 q, 4 H
IIIg	_	_	-	-	12.40 s	6.30 t, 2 H; 7.10 t, 2 H;
						7.30 – 7.60 m, 5 H
IV^a	2.10 d	2.28 s	-	9.15 s	12.30 s	_

TABLE IV ¹H NMR Data for compounds *III* and *IV*

^a CDCl₃.

734

solidified in deep-freeze with 2 - 3 ml of ethyl acetate. Recrystallization of the product from benzene gave pure compound *IV*. The ¹³C NMR data for compounds *IIa* and *IIc* are given below.

IIa: 158.88 (2 C, C=N), 151.24 (2 C, triazole C₅), 143.87 (2 C, triazole C₃), 28.77 (2 C, CH₂CH₂), 10.95 (2 C, CH₃).

IIc: 158.72 (2 C, C=N), 151.30 (2 C, triazole C₅), 145.87 (2 C, triazole C₃), 135.69 (2 C, aryl ring carbons), 128.66 (4 C, aryl ring carbons), 128.31 (4 C, aryl ring carbons), 126.60 (2 C, aryl ring carbons), 30.91 (2 C, CH₂), 28.25 (2 C, CH₂CH₂).

Molecular ion (M⁺) for compound IIa: 278.

REFERENCES

- 1. Kroger C. F., Hummel L., Mutscher M., Beyer H.: Chem. Ber. 98, 3025 (1965).
- 2. Ikizler A. A., Un R.: Chim. Acta Turc. 7, 269 (1979).
- 3. Milcent R., Redeuilh C.: J. Heterocycl. Chem. 17, 1691 (1980).
- 4. Milcent R., Vicart P.: Eur. J. Med. Chem.-Chim. Ther. 18, 215 (1983).
- 5. Malbec F., Milcent R., Vicart P., Bure A. M.: J. Heterocycl. Chem. 21, 1769 (1984).
- 6. Ikizler A. A., Ikizler A., Yildirim N.: Monatsh. Chem. 122, 557 (1991).
- 7. Chang C., Adams R.: J. Am. Chem. Soc. 53, 2353 (1931).
- 8. von Flitsch W., Kramer U., Zimmermann H.: Chem. Ber. 102, 3268 (1969).
- 9. Katritzky A. R., Suwinski J. W.: Tetrahedron 31, 1549 (1975).
- 10. Olofson R. A., Pepe J. P.: Tetrahedron Lett. 34, 3129 (1979).
- 11. Ikizler A. A., Yuksek H.: Org. Prep. Proced. Int. 25, 99 (1993).